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1 MORPH-FITTING -- AN EFFECTIVE

TECHNIQUE OF APPROXIMATION

Nicholas V. Findler and Ernesto Morgado*

Group for Computer Studies of Strategies

I I r 7  epartment of Computer Science

State University of New York at Buffalo

4226 Ridge Lea Road

Amherst, NY 14226

ABSTRACT

An algorithm has been developed and programmed which fits a

I minimum number of basic patterns, morphs, to a sequence of data

points. The dependent variable is given as a scalar value; the

independent variable is "time-like" and can represent continuous

or discrete time or an event counter. The morphs fitted are an

indefinite number of occurrences of trends (straight lines),

step functions, and sudden changes (peaks of short time

duration). Delay functions span over periods characterized by

uninterpretable events.

A useful by-product of our investigations is a set of

optimum decision rules concerning the boundary points between

sequential regression functions.
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*The development of the algorithm was joint effort. The program
based on it was produced by E.M. and the paper was written byI vN.V.F.
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1. THE TASK OF THE ALGORITHM IN GENERAL

Regression, Fourier and time-series analyses are the three

most well-known and widely-used techniques to describe (or -- as

often referred to -- explain, interpret and predict) the behavior

of some observable/measurable variables, the "dependent"

variables, in terms of some others, the "independent" variables,

which are normally assumed to be known exactly. In spite of the

powerful mathematical machinery developed for these methods,

there are certain types of tasks that are not easily handled by

even the combination or extension of such methods (cf. spline

functions). A relatively simple and special case is the problem,

so far not solved in a satisfactory and easily applicable manner,

of where the boundary points should be between subsequent

segmented (or multiphase) regression lines (see, e.g., [1-5)).

In our research on decision making under uncertainty and

risk (see, e.g., [6-14]), we have studied a variety of techniques

for the analysis and synthesis of competitive strategies. One of

j these investigations has been aimed at a system which can

identify rules of pattern formation, recognize stochastic

relations between patterns of causally associated variables, and

use such relations to estimate the values of variables that are

hidden from observation most of the time [15, 16).

Programs of this type, capable of making inductive

inferences over large domains of phenomena, would be of great

value in interpreting experimental data and in detecting patterns

which underlie the rules governing a given body of observations.

The first phase of this project has been the creation of a

["



Pattern Identifier and Categorizer (PIC) pro6ra.. It describes

in mathematical terms the sequence of values of any open variable

selected so that certain characteristic features of the

descriptions can then be made to relate, presumedly in a causal

manner, to the hidden variables of the environment. This is now

briefly discussed next.

The history of an environment can be characterized by an

event vector E, each component of which is a function of a

"time-like" variable. The latter can be discrete (quantized) or

continuous time, or an event counter. (For the sake of

simplicity, we shall refer to continuous time in the present

explanation.) The values of each component, e are scalar and

are measured at arbitrary (not necessarily equally-spaced) time

points.

In order to interpret, or mathematically "explain", the

history of the environmentf [el(t),e 2 (t),...], PIC has to

generate a uniform structure which can reproduce each e (t)

within tolerable limits. From among the three mathematical

techniques mentioned above, the time-series analysis may be the

most appropriate for such tasks. However, we have decided to

develop a more flexible and computationally less expensive

method. The idea is to select a small set of basic patterns,

called by us morphs, and use an indefinite but minimum number of

occurrences of these to fit el(t) so that the "unexplained

variance" (the sum of the squares of the difference between the

values of ei, and the morph) is also minimum.

Figure 1 shows the set of morphs, each with its

I
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characteristic parameters:

FIGURE 1 ABOUT HERE

A tren~nd is a straight line (monotonic increase or decrease)

over a certain range of j.The three parameters, .a, h and -Q,

completely define it. (The y-coordinates of the starting point

of a trend and of the end point of the previous morph are

identical. The first trend is always preceded by a step

function.)

A step function, determined by its two parameters .A and ,

is an instantaneous increase in the event vector component.

A sudden change, determined again by the two parameters

and h~, represents a peak of momentary effect. (The user of the

program can define the maximum length of time over which a sudden

- change is still meaningful -- and thus distinguish it from two

relatively close step functions of equal size but of opposite

*directions. At present, such length of time can be one or two

- time units.)

Finally, the delay function spans over a time period during

which the data points cannot be fitted by any morph at the

desired level of statistical significance -- the event remains

I. "unexplained" there.

2. AN INFORMAL DESCRIPTION OF THE ALGORITHM

j We first give an informal and verbal description of the

algorithm developed. A more formal version, written in a
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r The set of parametrized basic patterns

or morphs: (1) trend, (2) sudden change,

(3) step function and (4) delay function.
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PASCAL-like communication language, is in Appendix I.

Let us first define the concept of a window. It has a

starting (leftmost) point on the time scale, LOW, and a finishing

(rightmost) point, HIGH. The number of datapoints covered in

between the two is SCOPE. (Note that two out of these three

parameters would suffice to define the window but the algorithm

refers to them interchangeably and all are, therefore,

continually recomputed. Furthermore, SCOPE rather than the

time-difference between HIGH and LOW is meaningful because the

datapoints along the time-scale are not necessarily equidistant,

as mentioned before.)

Next, we discuss the two statistical measures for the

j goodness of fit of a trend, the E-ratio and the correlation

coefficient .

S 2g
F = yre-y (N -2) (1)

yreg-y

where the numerator is the variance of the regression line's

Y-values, yre_, around the mean of the Y-Values of the

datapoints, y; the denominator is the variance of the Y-values

of the datapoints, y-, around the regression line's Y-values,

yre.g. The degrees of freedom is one for the numerator and N-2

for the denominator, with N being the number of datapoints

considered for the trend.

The other, alternative measure is

N

R i=1 (2)
N -22

i t. N E=1

!
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where 1 and .y are the mean values of the datapoint coordinates.

The sign, by convention, is the same as that of the slope of the

regression line. The degree of freedom is N-2. The square of

the above, called the 'coefficient of determination', can be put

in a form similar to (1),

2
yreg-y

-(3)
S
y-y

Our program uses tabulated values of j and R (at 5% level of

significance) in making decisions as to whether the primary

morph, a trend fitted, is acceptable or not.

The total range of the datapoints is being scanned by moving

the window along the j-axis in both directions, changing the

scope of the window when necessary and performing various

computations on the datapoints within the window. We have

*experimented with several plausible algorithms as to when to

change the direction of movement and the scope of the window, and

what the computations should be within the window after some

difficulties have arisen with certain types of test data. It is

best to describe the decision-making machinery of the program in

terms of initializing the trend, enlengthening the trend (with

sudden changes incorporated in both cases), computing the stel,

function, and computing the delay function. It is also

informative to outline our process of discovering the most

effective algorithm for the first of these.

(a) The Initialization of a Trend

The user must specify the minimum number of datapoints a

trend must fit, MINSCOP. The program tries to establish a new

w -
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trend, starting with the first datapoint or with the las..

datapoint of a previous trend. It is inutiuitively obvious that,

for a certain goodness of fit, the more datapoints there are, the

higher total variance around the trend is allowed.

In out first approach, the program sets up a window with

MINSCOP and slides it along the 1-axis until a trerO is found.

If none is found, the scope of the window is increased and the

scanning is repeated. The drawback of this technique is that a

longer trend, but with a relatively larger scatter of points, is

ignored (not discovered) if a shorter trend with relatively

better fitting points is established first.

To avoid this drawback we have tried a second approach in

which the program enlarges the window gradually -- while

anchoring its leftmost point -- up to a limit as long as a trend

cannot be established. If still unsuccessful, the window is

reduced to MINSCOP again and shifted by one datapoint to the

right where the same process is repeated. It turns out that this

approach tends to force the inclusion of the datapoints on the

left -- they are disregarded only when even the largest window

cannot "absorb" the variance caused by them.

Further difficulties were met in our third approach when we

added the concept of sudden changes to the algorithm. The

routine identifying them returns the scope of the sudden change

(1 or 2 datapoints), deletes them from the computation of the

trend whose scope is, however, kept constant by adding on the

right new datapoints equal in number to that of the deleted ones.

This method did not initialize (correct) trends when the variance!
I



was relatively large and also identified wrong sudden changes.

This can be easily seen from Figure 2. Suppose 14INSCOP=5. No

trend is acceptable through the points 1, 2, 3, 4 and 5 (the

variance is too large). The program drops point 5 -- assuming it

is a sudden change -- and fits a trend through points 1, 2, 3, 4,

and 6. However, when all the points from 1 to 8 are considered

together through a window of larger scope, point 5 does form a

part of the trend.

FIGURE 2 ABOUT HERE

Our final, fourth approach conbimes the first two while

avoiding the drawbacks of either. Also, it postpones the

identification of sudden changes until after local scanning. It

makes sure that the number of datapoints that can be excluded on

the left is at most one less than (the current) MINSCOP (i.e.

always less than required for a separate trend). However, in

order to take into consideration the possibility of "bad" points

there, the program will gradually increase MINSCOP up to the

total range as long as no trend is found. The process of

changing the size of and shifting the window is as follows.

Suppose there is a sequence of datapoints left:

L, L+1, L+2, ... N

Let the initial minimum scope of a trend be

S:MINSCOP

I
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A problem in trend initialization (see text).
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The local scanning always has the range between L and

L+2S-2 ( .N) so that when the window is in the rightmost position,

there can be only S-i datapoints on the left that do not belong

to a trend potentially established across the window. The span

of the window is shifted step-by-step (S-i) times through

(L, L+S -1)

(L+1, L+S)

(L+2, L+S+I)

(L+S+l, L+2S-2)

If no trend is found, the window span, S, is increased and the

process of "local scanning" is repeated. This goes on until

either a trend is found or the window span becomes so large that

the last datapoint is its right boundary.

As can be seen, this algorithm uses the first approach

iteratively, within the range of local scanning. There is a

certain amount of redundant search, when the same window span is

used over the same datapoints at different local scans, but the

process is still very efficient and the drawbacks of the first

two approaches are avoided.

The trend so initialized is only the starting point. The

system tries to make it optimally long, which is the task of the

next phase.

j (b) The Lengthening of a Trend

Once a trend has been initialized, the system tries to

I
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g enlerigthen its range as much as possible until a state of

satisfactory fit is reached. First, it adds points on the right

as long as the quality of fit does not deteriorated below a

threshold value. Then it tries to drop one or two "bad" points

on the left if doing so improves the fit above (another)

threshold value. If dropping of points on the left has taken

place, the whole process starts anew: adding points at the right

and dropping points at the left in a ping-pong fashion until an

equilibrium is arrived at. Then the direction of iteration is

reversed and points are added at the left if possible.

Care has to be taken, however, with adding on the left

points that currently (and tentatively) belong to the previous

trend. The decision criterion is that the point in question is

allocated to that trend whose quality of fit improves more by

including the point. If the point represented a sudden change

with the previous trend and it would improve the fit of the

current trend, then it is simply annexed by the latter.

In the process of re-allocating points between trends, the

*parameters are of course recomputed. If the scope of the

shortened trend becomes smaller than the minimum allowed, the

trend is deleted or "swallowed up" by the subsequent one. As can

be seen, the system is extremely dynamic and can go through a

fairly large number of iterations from left to right and back

until an optimum arrangement is obtained. Using judiciously

selected levels for the threshold values noted above, the

j convergence process is very fast.

() Computing the Step Function



There are twu distinct cases of identifying the size

of the step function. When there is a delay function (see

below) between two subsequent trends, the value sought is

the difference between the y-values of the last point of the

previous trend and of the first point of the current trend.

When there is no delay function, the trends are

1adjacent. These can either quasi share a point (being

within the scope of both), as shown on Figure 3a, or they

are vertically separated at the boundary of their respective

scopes by the step size, as shown on Figure 3b. (By the

way, different algorithms have to take care of the two cases

of zero delay described below.)

I FIGURES 3a AND 3b ABOUT H~ERE

I (d) Computingz the Delay Function

As disev.ssed earlier, the delay function covers a time

period over which no mathematical interpretation of the

I events is possible (with the accepted level of statistical

significance). The "value" of the delay function equals the

I number of datapoints within the period.

There are two possible cases of zero delay. The

scopes of two adjacent trends meet at the time coordinate of

a datapoint (which is quasi shared by them) or in between

two datapoints which thus belong to different trends. These

I are shown on Figures 4a and b, respectively.
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Two cases of computing the size of the step

function, A, with zero derlays between adjacent trends.
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FIGURES 4a AND 4b ABOUT HERE

3. PROGRAM

The program, written in CDC Extended FORTRAN, comprises

about 1,100 lines. The user specifies, in addition to the

coordinates of the datapoints, the minimum scope of a trend, and

the threshold values for adding and dropping points at the two

ends of a trend (high and low end values of the correlation

coefficient R and the F-ratio.)

In traemo, the program provides an account of finding

each morph by printing the tentative parameters of every

iteration, and outputs messages and statistical measures of the

quality of fit, and the final values of all above. (The

selective trace prints out only the essential and final

information.) If the plotting mode is selected, both the

datapoints and the morphs are outputted on a plotter (in addition

to the lineprinter, which is always used for the datapoints..

The results of statistical calculations and comparisons

concerning the goodness of fit are printed together with the

final specification of each morph fitted; regardless of the trace

mode used

To give a rough estimate of the time required for

computations, the following CYBER 173 CPU times were spent on the

j tasks represented by Figures 5-10 (in addition to 9.891s

compilation time):!
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Task No. Fiure No. CPU time in ms

1 5 987

2 6 860

3 7 872

4 8 759

5 9 836

6 10 977

FIGURES 5 TO 10 ABOUT HERE

4. SUMMARY

We have developed a flexible and effective technique to

describe a time-sequence of points mathematically, in terms of an

indefinite number of basic patterns or morphs. The technique has

been shown to be more general than multiphase (segmented) linear

regression analysis. The amount of noise tolerated around the

morphs can easily be adjusted by changing certain sets of

tabulated values and user-provided parameters.
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The following is a very concise, high-level definition of

the main algorithms used in a PASCAL-like communication language:

program fit;

bein

whiile n~t end-of-sequence

ifpossible-to-init.-a-trend then

begzin

enlarge-it;

compute-the-delay;

compute-the-step;

bein

set-initial-minimum-scope-window

while possible and trend-not-found

be-in

whle. ((n-Qi local-scanning) .And (sudden-changed=O) anA

possible) Aa

increase-scope-of-window-to-the-right;

iL trend-not-found

begin

* restore-the-minimum-scope-window

slide-it-to-the-right;

mid;

And;
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fjjncU...n local-scanning:logical;

bein

set-window-at-left-extreme-of-interval;

wileJ (possible anid (=LQ i it-test)) Aa

slide-window-to-the-right;

iftrend-not-found

~thLen increase-scope-of-window;

uantil (not possible) Dx trend-found;

proce&dure enlarge;

begin

add-points-on-right;

uintil nia drop-points-on-left(2) ordrop-points-on-left(l);

add-points-to-the-left;

prcdu- add-points-on-right;

begin

wilei1 possible And fit-does-not-deteriorate &Q

increase-scope-of-window;

* .~Until. sudden-changes=O;



ppcdr add-points-on-left;

whl possible Aild (flQ± conflicting-with-previous-trend)

.an~d fit-does-not-deteriorate .dQ

increase-scope-of-window-to-left;

if conflicting-with-previous-trend

.U conflicting-point-is-a-sudden-change-of-last-trend

.ffit-does-not-deteriorate

then delete-point-from-previous-trend

elsae flag:=false

test: =improvement-of-quality-

of-fit-in-current-trend;

testi : improvement-of-quality-

of-fit-in-previous-trend;

ILtest>testl

.then delete-point-from-previous-trend

kJ..Af flag:=falsM;

.until nL flag;

funio~gn drop-points-on-left(n:jtger):jggal;

I
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be -,i n

ifscope<=(minimuniscope+n-1)

thie~n drop-points-on-left:=a.ag

low: =low-n;

scope: =scope-n;

iffit-does-improve

begin

drop-points-on-left:=fle

low: =10w-n;

scope: =scope+n;
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prcdul delay;

bein

IL first-trend

then delay:=number-of-points-left-unexplained-

before-this-trend;

elsea~ delay:=number-of-points-1eft-unexplained-

between-last-trend-and-this-trend;

prcdur step;

begin

ILfirst-trend

thien step:=regression-value-of-first-point-in-trend

beiin

yleft:=regression-value-of(left);

(left-last-point-on-last-trend)

yright:=regression-value-of (right);

{ right-first-point-on-this-trend)

it delayA0

the.~n step:=yright-yleft

.Leit left-is-accepted-by-this-trend anAd right-is-

accepted-by-last-trend

.t±.en step:=O

elset step:=yright-yleft;

end



LEGEND FOR FIGURES:

FIGURE 1 - The set of parametrized basic patterns or morphs:

(1) trend., (2) sudden change, (3) step function and

(4) delay function.

FIGURE 2 - A problem in trend initialization (see text).

FIGURE 3 - Two cases of computing the size of the step

function, a, with zero delays between adjacent trends

FIGURE 4 - Two cases of zero delays between adjacent trends

FIGURES 5 TO 10 - Six exemplary tasks for the morph-fitting

program.

FXIfE (ON PAGE 1)

The development of the algorithm was joint effort. The program based on

it was produced by E.M. and the paper was written by N.V.F.

LLi
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TNT)EX TERMS:

Ar'proximat ion techniques,

Rules of pattern formation,

Simnlified tivne-series analysis,

Yultiphase (sequential) regression analysis,

Controlled statistical measures for a-prroximation.


